AQA Chemistry

Question number	Answer	Marks	Guidance
1 (a)	$\Delta H = \Sigma(\Delta H_{\rm f} \text{ products}) - \Sigma(\Delta H_{\rm f} \text{ reactants})$ /= +34 - +90	1	Allow correct cycle
	$= -56 \text{ kJ mol}^{-1}$	1	Ignore no units, penalise incorrect units
1 (b)	$\Delta S = \Sigma(S \text{ products}) - \Sigma(S \text{ reactants})$ /= 240 - (205 +211/2)	1	
	$= -70.5 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$ / $-0.0705 \mathrm{kJ}\mathrm{K}^{-1}\mathrm{mol}^{-1}$	1	Ignore no units, penalise incorrect units Allow -70 to -71/070 to071
1 (c)	$T = \Delta H / \Delta S$ $T = (\text{Answer to part (a) } \times 1000) / \text{ answer to part(b)}$ $/= -56 / (-70.5 \div 1000)$	1	Mark consequentially on answers to parts (a) and (b)
	= 794 K (789 to 800 K)	1	Must have correct units Ignore signs; allow + or – and negative temps
1 (d)	Temperatures exceed this value	1	
1 (e)	$N_2 + O_2 \rightarrow 2NO$	1	Allow multiples
1 (f)	There is no change in the number of moles (of gases)	1	Can only score these marks if the equation in (e) has equal number of moles on each side
	So entropy/disorder stays (approximately) constant / entropy/disorder change is very small / $\Delta S=0$ / $T\Delta S=0$	1	Numbers, if stated must match equation
2 (a)	Because it is a <u>gas</u> compared with <u>solid</u> carbon	1	Mark independently
	Nitrogen is more disordered/random/chaotic/free to move	1	
2 (b)	0 K / –273 °C / absolute zero	1	
2 (c)	$\Delta G = \Delta H - T \Delta S$	1	Allow $\Delta H = \Delta G - T\Delta S$ $T\Delta S = \Delta H - \Delta G$ $\Delta S = (\Delta H - \Delta G)/T$ Ignore \ominus in G
2 (d)	ΔG is less than or equal to zero ($\Delta G \leq 0$)	1	Allow ΔG is less than zero (ΔG < 0) Allow ΔG is equal to zero (ΔG = 0) Allow ΔG is negative

AQA Chemistry

	pH = 6.73	1	Must be 2 d.p.
4 (a) (ii)	$\sqrt{(3.46 \times 10^{-14})} = 1.86 \times 10^{-7}$	1	If no square root, CE=0
4 (a) (i)	[H ⁺][OH ⁻] OR [H3O ⁺][OH ⁻]	1	Must have [] not () Ignore (aq)
	$2BrO_3^- + 10Br^- + 12H^+ \rightarrow 6Br_2 + 6H_2O$		One mark is given for all the correct species and one mark for balancing the equation. Accept: $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ which is half of the other equation.
3 (b) (ii)	$2Br^- \rightarrow Br_2 + 2e^-$	3	Remember oxidation is at the left-hand half-cell, which is the half cell with the lower E value.
3 (b) (i)	0.43 V	1	Remember that: E _{cell} = E _{right} – E _{left}
3 (a)	1.00 mol dm ⁻³ ; 100 kPa	2	This is part of the definition, so learn these conditions.
	ΔG is always positive	1	This mark can only be scored if ΔH is positive and ΔS is negative
	$\Delta S = 2.4 - 5.7 = -3.3 \text{ J K}^{-1} \text{ mol}^{-1}$	1	for M1 and M2 allow no units, penalise wrong units
2 (g)	$\Delta H = 1.9 \text{ kJ mol}^{-1}$	1	
2 (f)	Activation energy is high	1	Allow chemical explanation of activation energy Allow needs route with lower activation energy Allow catalyst lowers activation energy
	<i>T</i> = (90.4 × 1000) / 12.35 = 7320 K (7319.8 K)	1	Allow 7230 to 7350 <u>K</u> (Note 7.32 K scores 4 marks) Units of temperature essential to score the mark
	$\Delta S = 211.1 - 205.3/2 - 192.2/2 = 12.35$	1	
	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$	1	
	$\Delta H = +90.4$	1	Allow $\Delta H = +90$
2 (e)	When $\Delta G = 0$, $T = \Delta H / \Delta S$	1	

AQA Chemistry

4 (a) (iii)	$[H^+] = 10^{-11.36} (= 4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12})$	1	Mark for working
	$K_w = [4.365 \times 10^{-12} \text{ OR } 4.37 \times 10^{-12} \times 0.047]$ = 2.05 × 10 ⁻¹³	1	Mark for answer Ignore units Allow 2.05 × 10^{-13} – 2.1 × 10^{-13}
4 (b) (i)	HCOOH \rightleftharpoons HCOO ⁻ + H ⁺ OR HCOOH + H ₂ O \rightleftharpoons HCOO ⁻ + H ₃ O ⁺	1	Must have ≓ but ignore brackets. Allow HCO ₂ ⁻ or CHOO ⁻ , i.e., minus must be on oxygen, so penalise COOH ⁻
4 (b) (ii)	<i>K</i> _a = [H ⁺][HCOO [−]] / [HCOOH] OR [H3O ⁺][HCOO [−]] / [HCOOH]	1	Must have all brackets but allow () Must be HCOOH etc. Allow ecf in formulae from 2(b)(i)
4 (b) (iii)	$K_a = [H^+]^2 / [HCOOH] ([H^+]^2 = 1.78 \times 10^{-4} \times 0.056$ = 9.97 × 10 ⁻⁶)	1	Allow HA or HX etc. Allow $[H^+] = \sqrt{(k_a \times [HA])}$ for M1
	$[H^+] = 3.16 \times 10^{-3}$	1	Mark for answer
	pH = 2.50	1	allow more than 2 d.p. but not fewer Allow correct pH from their wrong $[H^+]$ here only If square root shown but not taken, pH = 5.00 can score max 2 for M1 and M3
4 (b) (iv)	Decrease	1	Mark M1 independently
	Equm <u>shifts/moves</u> to RHS OR more H^+ OR K_a increases OR more dissociation	1	
	To reduce temperature or oppose increase/change in temperature	1	Only award M3 following correct M2
4 (c) (i)	$[H^{+}] = K_{a} \times [HX] / [X^{-}]$ OR pH = pK _a - log ([HX]/[X ⁻])	1	If [HX] / [X ⁻] upside down, no marks
	$1.78 \times 10^{-4} \times 2.35 \times 10^{-2} / 1.84 \times 10^{-2}$ OR pH = 3.75 - log (2.35 × 10 ⁻² / (1.84 × 10 ⁻²)) = 2.27 × 10 ⁻⁴	1	allow more than 2 d.p. but not
	pH = 3.64	1	allow more than 2 d.p. but not fewer pH calc NOT allowed from their wrong [H ⁺] here

AQA Chemistry

4 (c) (ii)	Mol H ⁺ added = 5.00×10^{-4}	1	Mark on from AE in moles of HCl (e.g., 5×10^{-3} gives pH = 3.42 scores 3)
	Mol HCOOH = 2.40×10^{-2} and Mol HCOO ⁻ = 1.79×10^{-2}	1	If either wrong no further marks except AE (−1) OR if ECF in mol acid and/or mol salt from (c)(i), can score all 4
	$[H^{+}] = K_{a} \times [HX] / [X^{-}]$ = 1.78 × 10 ⁻⁴ × 2.40 × 10 ⁻² / (1.79 × 10 ⁻²) = 2.39 × 10 ⁻⁴ OR pH = 3.75 - log (2.40 × 10 ⁻² / (1.79 × 10 ⁻²))	1	If $[HX] / [X]$ upside down here after correct expression in (c)(i), no further marks If $[HX] / [X]$ upside down here and is repeat error from (c)(i), max 3 (pH = 3.88 after 3.86 in 2(c)(i))
	pH = 3.62	1	allow more than 2 dp but not fewer
			pH calc NOT allowed from their wrong [H⁺] here
5 (a)	methanoic acid	1	
5 (b)	An acid that is only partially dissociated in solution	1	
5 (c)	Oxygen is significantly more electronegative than hydrogen, so the O—H bond is polarised $O^{\delta^{-}}$ —H ^{δ^{+}} so the H is already in the process of becoming a H ^{$^{+}$} ion.	1	
5 (d)	$\kappa_{a} = \frac{[H^{+}(aq)]_{eqm} \times [A^{-}(aq)]_{eqm}}{[HA(aq)]_{eqm}}$	2	
5 (e)	Sulfamic acid as it has the lowest value of pK_a	2	
5 (f)	$pK_a = -\log_{10} K_a$, so $K_a = 1.58 \times 10^{-4} \text{ mol dm}^{-3}$		
	$1.58 \times 10^{-4} = \frac{[\text{H}^+(\text{aq})]_{\text{eqm}} \times [\text{A}^-(\text{aq})]_{\text{eqm}}}{[\text{HA}(\text{aq})]_{\text{eqm}}}$	1	
	$[H^{+}(aq)]_{eqm} = [A^{-}(aq)]_{eqm}$ and, as it is a weak acid, $[HA(aq)]_{eqm} \approx 1 \text{ mol dm}^{-3}$	1	
	So $1.58 \times 10^{-4} = \frac{[\text{H}^+(\text{aq})]_{\text{eqm}}^2}{1}$		
	$[H^+(aq)]_{eqm} = 0.01261 \text{ mol dm}^{-3}$	1	
	$pH = -log_{10} [H^+] = 1.90$	1	
5 (g)	$\label{eq:acO3} \begin{array}{c} CaCO_3(s) + 2HCOOH(aq) \rightarrow Ca(HCOO)_2 + \\ & H_2O(I) + CO_2(g) \end{array}$	2	1 mark for formulae, 1 mark for balancing

AQA Chemistry

5 (h)	$M_{\rm r}$ formic acid is 46.0 and $M_{\rm r}$ of calcium carbonate is 100.1	1	
	so 100.1 g CaCO ₃ reacts with 92.0 g HCOOH, so 4.5 g HCOOH reacts with 4.89 g CaCO ₃	1	
5 (i)	The formic acid would react with the OH ⁻ ions so moving the equilibrium to the left. The chlorine gas formed is toxic	3	
6 (a)	The number of protons increases (across the period) / nuclear charge increases	1	
	Therefore, the attraction between the nucleus and electrons increases	1	Can only score M2 if M1 is correct
6 (b)	S_8 molecules are bigger than P_4 molecules	1	Allow sulfur molecules have bigger surface area and sulfur
	Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur	1	molecules have bigger $M_{\rm r}$
6 (c)	Sodium oxide contains O ²⁻ ions	1	
	These O^{2-} ions react with water forming OH^{-} ions	1	O^{2-} + H ₂ O 2OH ⁻ scores M1 and M2
6 (d)	$P_4O_{10} + 12OH^- \rightarrow 4PO_4^{3-} + 6H_2O$	1	
7 (a)	Gradiant drawn on graph	1	Line must touch the curve at 0.012 but must not cross the curve.

AQA Chemistry

7 (b)	Stage 1: Rate of reaction when concentration = $0.0120 \text{ mol dm}^{-3}$		Extended response
	From the tangent Change in [butadiene] = $-0.0160 - 0$ and change in time = $7800 - 0$	1	
	Gradient = $-(0.0160 - 0) / (7800 - 0)$ = -2.05×10^{-6}		
	Rate = $2.05 \times 10^{-6} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$	1	
	Stage 2: Comparison of rates and concentrations Initial rate / rate at $0.0120 =$ $(4.57 \times 10^{-6}) / (2.05 \times 10^{-6}) = 2.23$	1	Marking points in stage 2 can be in either order
	Initial concentration / concentration at point where tangent drawn = $0.018 / 0.012 = 1.5$	1	
	Stage 3: Deduction of order If order is 2, rate should increase by factor of $(1.5)^2 = 2.25$ this is approximately equal to 2.23 therefore order is 2nd with respect to butadiene	1	
8 (a)	An acid that is fully dissociated into H ⁺ ions in solution.	1	
8 (b)	$HCI(g) + aq \rightarrow H^{+}(aq) + CI^{-}(aq)$	1	
8 (c) (i)	0.01 mol	1	
8 (c) (ii)	$pH = -log_{10}[H^+]$, so $pH = 2.00$	1	
8 (d) (i)	$eq:NaHCO_3(s) + HCI(aq) \rightarrow NaCI(aq) + CO_2(g) \\ + H_2O(I)$	2	1 mark for formulae, 1 mark for balancing
8 (d) (iii)	$CaCO_{3}(s) + 2HCI \rightarrow CaCl_{2}(aq) + CO_{2}(g) + H_{2}O(I)$	2	1 mark for formulae, 1 mark for balancing
8 (e) (i)	$M_{r} \text{ NaHCO}_{3} \text{ is 84.0 so we have}$ $\frac{0.267}{84.0} = 0.0032 \text{ mol}$ 1 mol acid is neutralised by 1 mol NaHCO_{3} so = 3.2 \times 10^{-3} \text{ mol acid is neutralised by NaHCO}_{3}	1	
8 (e) (ii)	$\frac{M_r \text{ CaCO}_3 \text{ is } 100.1 \text{ so we have}}{\frac{0.160}{100.1}} = 0.0016 \text{ mol}$	1	
	100.1 2 mol acid is neutralised by 1 mol CaCO ₃ so = 3.2×10^{-3} mol acid is neutralised by CaCO ₃	1	
8 (e) (iii)	1 mol NaHCO ₃ neutralises 1 mol HCl 1 mol of CaCO ₃ neutralises 2 mol HCl	1	
	$3.2 \times 10^{-3} \text{ mol} + (3.2 \times 10^{-3} \times 2) = 9.6 \times 10^{-3} \text{ mol}$		

AQA Chemistry

8 (f) (i)	Total acid neutralised is 0.0064 mol leaving 0.01 - 0.0064 = 0.0036 mol HCl, dissolved in a volume of 1 dm ³	1	
8 (f) (ii)	pH = 2.44	1	