Question number	Answer	Marks	Guidance
1 (a)	$\begin{aligned} & \Delta H=\Sigma\left(\Delta H_{\mathrm{f}} \text { products }\right)-\Sigma\left(\Delta H_{\mathrm{f}} \text { reactants }\right) \\ & l=+34-+90 \\ & =-56 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 1	Allow correct cycle Ignore no units, penalise incorrect units
1 (b)	$\begin{aligned} & \Delta S=\Sigma(S \text { products })-\Sigma(S \text { reactants }) \\ & I=240-(205+211 / 2) \\ & =-70.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.0705 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	1 1	Ignore no units, penalise incorrect units Allow -70 to -71/-.070 to -. 071
1 (c)	$\begin{aligned} & T=\Delta H / \Delta S \\ & T=(\text { Answer to part }(\mathrm{a}) \times 1000) / \text { answer to part(b) } \\ & I=-56 /(-70.5 \div 1000) \\ & =794 \mathrm{~K}(789 \text { to } 800 \mathrm{~K}) \end{aligned}$	1 1	Mark consequentially on answers to parts (a) and (b) Must have correct units Ignore signs; allow + or - and negative temps
1 (d)	Temperatures exceed this value	1	
1 (e)	$\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$	1	Allow multiples
1 (f)	There is no change in the number of moles (of gases) So entropy/disorder stays (approximately) constant / entropy/disorder change is very small / $\Delta S=0 / T \Delta S=0$	1 1	Can only score these marks if the equation in (e) has equal number of moles on each side Numbers, if stated must match equation
2 (a)	Because it is a gas compared with solid carbon Nitrogen is more disordered/random/chaotic/free to move	1 1	Mark independently
2 (b)	$0 \mathrm{~K} /-273^{\circ} \mathrm{C} /$ absolute zero	1	
2 (c)	$\Delta G=\Delta H-T \Delta S$	1	$\begin{aligned} & \text { Allow } \Delta H=\Delta G-T \Delta S \\ & T \Delta S=\Delta H-\Delta G \\ & \Delta S=(\Delta H-\Delta G) / T \end{aligned}$ $\text { Ignore } \ominus \text { in } G$
2 (d)	ΔG is less than or equal to zero ($\Delta G \leq 0$)	1	Allow ΔG is less than zero (ΔG <0) Allow ΔG is equal to zero ($\Delta G=$ 0) Allow ΔG is negative

2 (e)	When $\Delta G=0, T=\underline{\Delta H / \Delta S}$ $\begin{aligned} & \Delta H=+90.4 \\ & \Delta S=\Sigma S(\text { products })-\Sigma S(\text { reactants }) \\ & \Delta S=211.1-205.3 / 2-192.2 / 2=12.35 \end{aligned}$ $T=(90.4 \times 1000) / 12.35=7320 \mathrm{~K}(7319.8 \mathrm{~K})$	1 1 1 1 1	Allow $\Delta H=+90$ Allow 7230 to 7350 K (Note 7.32 K scores 4 marks) Units of temperature essential to score the mark
2 (f)	Activation energy is high	1	Allow chemical explanation of activation energy Allow needs route with lower activation energy Allow catalyst lowers activation energy
2 (g)	$\begin{aligned} & \Delta H=1.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \Delta S=2.4-5.7=-3.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ ΔG is always positive	1 1 1	for M1 and M2 allow no units, penalise wrong units This mark can only be scored if ΔH is positive and ΔS is negative
3 (a)	$1.00 \mathrm{~mol} \mathrm{dm}^{-3} ; 100 \mathrm{kPa}$	2	This is part of the definition, so learn these conditions.
3 (b) (i)	0.43 V	1	Remember that: $\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {right }}-$ $E_{\text {left }}$
3 (b) (ii)	$2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$ $2 \mathrm{BrO}_{3}^{-}+10 \mathrm{Br}^{-}+12 \mathrm{H}^{+} \rightarrow 6 \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	3	Remember oxidation is at the left-hand half-cell, which is the half cell with the lower E value. One mark is given for all the correct species and one mark for balancing the equation. Accept: $\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow$ $3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ which is half of the other equation.
4 (a) (i)	$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$OR $\left[\mathrm{H} 3 \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$	1	```Must have [] not () Ignore (aq)```
4 (a) (ii)	$\begin{aligned} & \sqrt{ }\left(3.46 \times 10^{-14}\right)=1.86 \times 10^{-7} \\ & \mathrm{pH}=6.73 \end{aligned}$	1 1	If no square root, $C E=0$ Must be 2 d.p.

\begin{tabular}{|c|c|c|c|}
\hline 4 (a) (iii) \& \[
\begin{aligned}
\& {\left[\mathrm{H}^{+}\right]=10^{-11.36}\left(=4.365 \times 10^{-12} \text { OR } 4.37 \times 10^{-12}\right)} \\
\& K_{w}=\left[4.365 \times 10^{-12} \text { OR } 4.37 \times 10^{-12} \times 0.047\right] \\
\& =2.05 \times 10^{-13}
\end{aligned}
\] \& 1
1 \& \begin{tabular}{l}
Mark for working \\
Mark for answer Ignore units Allow \(2.05 \times 10^{-13}-2.1 \times 10^{-13}\)
\end{tabular} \\
\hline 4 (b) (i) \& \[
\begin{aligned}
\& \mathrm{HCOOH} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}^{+} \\
\& \mathrm{OR} \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
\] \& 1 \& \begin{tabular}{l}
Must have \(\rightleftharpoons\) but ignore brackets. \\
Allow \(\mathrm{HCO}_{2}^{-}\)or \(\mathrm{CHOO}^{-}\), i.e., minus must be on oxygen, so penalise \(\mathrm{COOH}^{-}\)
\end{tabular} \\
\hline 4 (b) (ii) \& \[
\begin{array}{r}
K_{a}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}] \mathrm{OR} \\
{\left[{\left.\mathrm{H} 3 \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]}^{2}\right.}
\end{array}
\] \& 1 \& \begin{tabular}{l}
Must have all brackets but allow () \\
Must be HCOOH etc. \\
Allow ecf in formulae from 2(b)(i)
\end{tabular} \\
\hline 4 (b) (iii) \& \[
\begin{aligned}
\& K_{a}=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HCOOH}]\left(\left[\mathrm{H}^{+}\right]^{2}=1.78 \times 10^{-4} \times 0.056\right. \\
\& \left.=9.97 \times 10^{-6}\right) \\
\& \\
\& {\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-3}} \\
\& \mathrm{pH}=2.50
\end{aligned}
\] \& 1

1

1 \& | Allow HA or HX etc. |
| :--- |
| Allow $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(k_{\mathrm{a}} \times[\mathrm{HA}]\right)$ for M1 |
| Mark for answer |
| allow more than 2 d.p. but not fewer |
| Allow correct pH from their wrong $\left[\mathrm{H}^{+}\right]$here only If square root shown but not taken, $\mathrm{pH}=5.00$ can score max 2 for M1 and M3 | \\

\hline 4 (b) (iv) \& | Decrease |
| :--- |
| Equm shifts/moves to RHS OR more H^{+}OR K_{a} increases OR more dissociation |
| To reduce temperature or oppose increase/change in temperature | \& 1

1

1 \& | Mark M1 independently |
| :--- |
| Only award M3 following correct M2 | \\

\hline 4 (c) (i) \& $$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times[\mathrm{HX}] /\left[\mathrm{X}^{-}\right]} \\
& \text {OR pH }=\mathrm{p} K_{\mathrm{a}}-\log \left([\mathrm{HX}] /\left[\mathrm{X}^{-}\right]\right) \\
& 1.78 \times 10^{-4} \times 2.35 \times 10^{-2} / 1.84 \times 10^{-2} \\
& \mathrm{OR} \mathrm{pH}=3.75-\log \left(2.35 \times 10^{-2} /\left(1.84 \times 10^{-2}\right)\right) \\
& =2.27 \times 10^{-4} \\
& \mathrm{pH}=3.64
\end{aligned}
$$ \& 1

1
1

1 \& | If [HX] / [X^{-}] upside down, no marks |
| :--- |
| allow more than 2 d.p. but not fewer |
| pH calc NOT allowed from their wrong $\left[\mathrm{H}^{+}\right]$here | \\

\hline
\end{tabular}

Oxford A Level Sciences
AQA Chemistry

Section 1 Physical chemistry 2

 Practice questions\begin{tabular}{|c|c|c|c|}
\hline 4 (c) (ii) \& $$
\begin{aligned}
& \hline \hline \text { Mol } \mathrm{H}^{+} \text {added }=5.00 \times 10^{-4} \\
& \\
& \text { Mol } \mathrm{HCOOH}=2.40 \times 10^{-2} \\
& \text { and } \mathrm{Mol} \mathrm{HCOO}=1.79 \times 10^{-2} \\
& \\
& {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times[\mathrm{HX}] /\left[\mathrm{X}^{-}\right]} \\
& =1.78 \times 10^{-4} \times 2.40 \times 10^{-2} /\left(1.79 \times 10^{-2}\right) \\
& =2.39 \times 10^{-4} \\
& \mathrm{OR} \mathrm{pH}=3.75-\log \left(2.40 \times 10^{-2} /\left(1.79 \times 10^{-2}\right)\right) \\
& \\
& \mathrm{pH}=3.62
\end{aligned}
$$ \& 1
1
1

1 \& | Mark on from AE in moles of HCl (e.g., 5×10^{-3} gives $\mathrm{pH}=$ 3.42 scores 3) |
| :--- |
| If either wrong no further marks except AE (-1) OR if ECF in mol acid and/or mol salt from (c)(i), can score all 4 |
| If [HX] / [X^{-}] upside down here after correct expression in (c)(i), no further marks |
| If $[H X] /\left[X^{-}\right]$upside down here and is repeat error from (c)(i), $\max 3(\mathrm{pH}=3.88$ after 3.86 in 2(c)(i)) |
| allow more than 2 dp but not fewer |
| pH calc NOT allowed from their wrong $\left[\mathrm{H}^{+}\right]$here |

\hline 5 (a) \& methanoic acid \& 1 \&

\hline 5 (b) \& An acid that is only partially dissociated in solution \& 1 \&

\hline 5 (c) \& Oxygen is significantly more electronegative than hydrogen, so the $\mathrm{O}-\mathrm{H}$ bond is polarised $\mathrm{O}^{\delta-}-\mathrm{H}^{\text {סे }}$ so the H is already in the process of becoming a H^{+}ion. \& 1 \&

\hline 5 (d) \& $$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\mathrm{eqm}} \times\left[\mathrm{A}^{-}(\mathrm{aq})\right]_{\mathrm{eqm}}}{[\mathrm{HA}(\mathrm{aq})]_{\mathrm{eqm}}}
$$ \& 2 \&

\hline 5 (e) \& Sulfamic acid as it has the lowest value of $\mathrm{p} K_{\mathrm{a}}$ \& 2 \&

\hline 5 (f) \& $$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}, \text { so } K_{\mathrm{a}}=1.58 \times 10^{-4} \mathrm{~mol} \mathrm{dm} \\
& 1.58 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\mathrm{eqm}} \times\left[\mathrm{A}^{-}(\mathrm{aq})\right]_{\mathrm{eqm}}}{[\mathrm{HA}(\mathrm{aq})]_{\mathrm{eqm}}} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }}=\left[\mathrm{A}^{-}(\mathrm{aq})\right]_{\text {eqm }} \text { and, as it is a weak acid, }} \\
& [\mathrm{HA}(\mathrm{aq})]]_{\text {eqm }} \approx 1 \mathrm{~mol} \mathrm{dm}^{-3} \\
& \mathrm{So} 1.58 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\mathrm{eqm}}{ }^{2}}{1} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]_{\text {eqm }}=0.01261 \mathrm{~mol} \mathrm{dm}^{-3}} \\
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=1.90
\end{aligned}
$$ \& 1

1

1 \&

\hline 5 (g) \& $$
\begin{aligned}
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCOOH}(\mathrm{aq}) \rightarrow \mathrm{Ca}(\mathrm{HCOO})_{2}+ \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$ \& 2 \& 1 mark for formulae, 1 mark for balancing

\hline
\end{tabular}

Oxford A Level Sciences
AQA Chemistry

5 (h)	M_{r} formic acid is 46.0 and M_{r} of calcium carbonate is 100.1 so $100.1 \mathrm{~g} \mathrm{CaCO}_{3}$ reacts with 92.0 g HCOOH , so 4.5 g HCOOH reacts with $4.89 \mathrm{~g} \mathrm{CaCO}_{3}$	1 1	
5 (i)	The formic acid would react with the OH^{-}ions so moving the equilibrium to the left. The chlorine gas formed is toxic	3	
6 (a)	The number of protons increases (across the period) / nuclear charge increases Therefore, the attraction between the nucleus and electrons increases	1 1	Can only score M2 if M1 is correct
6 (b)	S_{8} molecules are bigger than P_{4} molecules Therefore, van der Waals / dispersion / London forces between molecules are stronger in sulfur	1 1	Allow sulfur molecules have bigger surface area and sulfur molecules have bigger M_{r}
6 (c)	Sodium oxide contains O^{2-} ions These O^{2-} ions react with water forming OH^{-}ions	1 1	$\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} 2 \mathrm{OH}^{-}$scores M1 and M2
6 (d)	$\mathrm{P}_{4} \mathrm{O}_{10}+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{PO}_{4}{ }^{3-}+6 \mathrm{H}_{2} \mathrm{O}$	1	
7 (a)	Gradiant drawn on graph	1	Line must touch the curve at 0.012 but must not cross the curve.

\begin{tabular}{|c|c|c|c|}
\hline 7 (b) \& \begin{tabular}{l}
Stage 1: Rate of reaction when concentration = \(0.0120 \mathrm{~mol} \mathrm{dm}^{-3}\) \\
From the tangent \\
Change in [butadiene] \(=-0.0160-0\) and change in time \(=7800-0\)
\[
\begin{aligned}
\& \text { Gradient }=-(0.0160-0) /(7800-0) \\
\&=-2.05 \times 10^{-6} \\
\& \text { Rate }=2.05 \times 10^{-6}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \\
Stage 2: Comparison of rates and concentrations Initial rate \(/\) rate at \(0.0120=\)
\[
\left(4.57 \times 10^{-6}\right) /\left(2.05 \times 10^{-6}\right)=2.23
\] \\
Initial concentration / concentration at point where tangent drawn \(=0.018 / 0.012=1.5\) \\
Stage 3: Deduction of order If order is 2 , rate should increase by factor of \((1.5)^{2}=2.25\) this is approximately equal to 2.23 therefore order is \(2 n d\) with respect to butadiene
\end{tabular} \& 1

1
1
1
1

1 \& | Extended response |
| :--- |
| Marking points in stage 2 can be in either order |

\hline 8 (a) \& An acid that is fully dissociated into H^{+}ions in solution. \& 1 \&

\hline 8 (b) \& $\mathrm{HCl}(\mathrm{g})+\mathrm{aq} \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ \& 1 \&

\hline 8 (c) (i) \& 0.01 mol \& 1 \&

\hline 8 (c) (ii) \& $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$, so $\mathrm{pH}=2.00$ \& 1 \&

\hline 8 (d) (i) \& $$
\begin{aligned}
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+ & \mathrm{CO}_{2}(\mathrm{~g}) \\
& +\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$ \& 2 \& 1 mark for formulae, 1 mark for balancing

\hline 8 (d) (iii) \& $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ \& 2 \& 1 mark for formulae, 1 mark for balancing

\hline 8 (e) (i) \& | $\mathrm{M}_{\mathrm{r}} \mathrm{NaHCO}_{3}$ is 84.0 so we have $\frac{0.267}{84.0}=0.0032 \mathrm{~mol}$ |
| :--- |
| 1 mol acid is neutralised by $1 \mathrm{~mol} \mathrm{NaHCO}_{3}$ so $=3.2 \times 10^{-3} \mathrm{~mol}$ acid is neutralised by NaHCO_{3} | \& 1 \&

\hline 8 (e) (ii) \& | $\mathrm{M}_{\mathrm{r}} \mathrm{CaCO}_{3}$ is 100.1 so we have $\frac{0.160}{100.1}=0.0016 \mathrm{~mol}$ |
| :--- |
| 2 mol acid is neutralised by $1 \mathrm{~mol} \mathrm{CaCO}_{3}$ $\mathrm{so}=3.2 \times 10^{-3} \mathrm{~mol}$ acid is neutralised by CaCO_{3} | \& 1

1 \&

\hline 8 (e) (iii) \& | $1 \mathrm{~mol} \mathrm{NaHCO}_{3}$ neutralises 1 mol HCl |
| :--- |
| 1 mol of CaCO_{3} neutralises 2 mol HCl $3.2 \times 10^{-3} \mathrm{~mol}+\left(3.2 \times 10^{-3} \times 2\right)=9.6 \times 10^{-3} \mathrm{~mol}$ | \& 1 \&

\hline
\end{tabular}

Section 1 Physical chemistry 2 Practice questions

8 (f) (i)	Total acid neutralised is 0.0064 mol leaving $0.01-0.0064=0.0036 \mathrm{~mol} \mathrm{HCl}$, dissolved in a volume of $1 \mathrm{dm}^{3}$	1	
8 (f) (ii)	$\mathrm{pH}=2.44$	1	

